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Abstract 
Proposing an unprecedented color breakup (CBU) evaluation 
index based on dominant visual saliency of natural images for 
field-sequential-color displays, this paper achieves a linear 
correlation coefficient of 0.82 between subjective and objective 
CBU visibilities. Consequently, this study is promising for being 
a criterion to assess CBU in FSC-related devices—low power and 
virtual/augmented reality displays. 
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1. Introduction 
    Field-sequential-color (FSC) displays, as shown in Fig. 1(a), 
sequentially flash multiple fields of primary colors to produce 
temporal-mixing colors without using color filters. FSC displays 
have merits of higher light utilization efficiency and higher spatial 
resolution compared with spatial-color-mixing displays, e.g., 
conventional liquid crystal displays (LCDs) [1]. Moreover, the 
FSC scheme is necessary for virtual-reality (VR) and augmented-
reality (AR) devices that use reflective displays, e.g., liquid 
crystal on silicon (LCoS) and digital mirror-devices (DMDs) [2]. 
However, since a relative velocity between displayed images and 
the observers’ eyes causes that the sequentially produced 
primary-color images cannot perfectly overlap on the retina, FSC 
displays suffer from a severe issue—color breakup (CBU), which 
degrades image quality and discomforts observers [3]-[5], as 
shown in Fig. 1(b). 

 
Fig. 1. (a) Temporal color mixing principle of FSC displays; 
(b) demonstration of the CBU phenomenon. 
    To suppress CBU, on the one hand, a number of FSC 
algorithms have been proposed by addressing different aspects of 
the causes of CBU, such as stencil-FSC [3], local primary 
desaturation (LPD) [4], among others. On the other hand, an 
objective CBU index that can accurately predict the perceptual 
CBU visibility according to the observers’ subjectivities is highly 
demanded to evaluate the performances of FSC displays. Zhang 
et al. [5] and Cheng et al. [6] used the configuration of an FSC 
display, such as the color and lightness differences between the 
fields, to derive the CBU visibility for a simple pattern, e.g., a 
solid-colored block, and obtained objective results matched well 
with subjective results. In addition, Kim et al. [7] and Yang et al. 

[8] divided an image into multiple blocks and used solid-colored 
blocks to approximate to the blocks, to estimate the CBU 
visibility. Nevertheless, using solid-colored blocks to 
approximate to an image and not considering how the human 
vision system comprehends an image [9] make it still an open 
problem that how to achieve an image-content-adaptive CBU 
index that can directly predict perceptual CBU visibilities for 
natural images. By considering that the CBU visibility 
considerably varies with image contents, such an extension from 
simple patterns to natural images is of great significance. 
    In this paper, to develop an image-content-adaptive CBU 
index, an image database containing 25 reference images that 
cover a wide range of structural and chromatic complexities is 
first established. For each reference image, five different levels of 
CBU are created and corresponding sequential fields are derived, 
so that 125 test cases with a variety of CBU visibilities are 
generated. For each test case, its fields are sequentially shown on 
a 240-Hz LCD, so as to obtain an FSC LCD with a frame rate of 
60 Hz. Next, on the one hand, 18 subjects are asked to 
subjectively rate CBU visibilities of the test cases. On the other 
hand, with the aid of the visual saliency theory, by extracting the 
CBU information in the dominant visual saliency regions (DVS 
regions) of an image that are assumed to influence the perception 
of CBU the most, this work develops an objective algorithm that 
can calculate a CBU index from two retinal images with and 
without CBU respectively. By analyzing the subjective and 
objective results, the Pearson linear correlation coefficient 
(PLCC) is as high as 0.82, while not considering DVS region can 
only achieve a PLCC lower than 0.45, which verifies our proposal 
that the CBU visibility is mainly determined by the CBU 
information in DVS regions. 

2. Methods 
2.1 Establishment of CBU Image Database 
    To our knowledge, few acknowledged databases of natural 
images for CBU visibilities have been proposed. Therefore, we 
seek to establish one containing dozens of reference images that 
cover a wide range of structural and chromatic complexities, and 
test cases of various CBU visibilities are also desired. For this 
purpose, 15 complicated reference images from the ESPL 
Synthetic Image Database [10] are first selected. Next, ten 
reference images with relatively simple structures, are selected 
from the previous studies of CBU visibility [3-6] and Internet. 
Fig. 2(a) shows all the 25 reference images. 
    To evaluate structural complexities (SC) of the 25 reference 
images, multi-scale structural similarity (MS-SSIM), a method 
for assessing the similarity between two grayscale images [9], is 
adopted. First, each reference image is transferred into CIE 
L*a*b* color space. The similarity SM(L*) (0<SM(L*)<1) 
between each reference image’s L* channel and its average L* is 
calculated by MS-SSIM, where a larger value indicates a  
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Fig. 2. (a) Our natural image database and assessment of the variety of differences by (b) structural complexity and (c) chromatic 
complexity of the image database. 

better similarity. Next, SC is defined as 1-SM(L*), meaning that 
SC (0<SC<1) is an index positively correlated with the structural 
complexity. Fig 2(b) shows the distribution of SC of the reference 
images, which comprehensively covers 0 to 0.8, demonstrating a 
wide range of SC, and three images having high, moderate, and 
low SCs, respectively, are also presented. Note that no images fill 
in the SC range of 0.8 to 1 because natural images always have 
intrinsic statistical features; that is, natural images hardly give rise 
to completely random structures with an ultra-high SC. The 
chromatic complexities (CC) of the reference images are 
evaluated with the similar method for a* and b* channels, as 
CC(a*)=1-SM(a*) and CC(b*)=1-SM(b*). Fig. 2(c) shows the 
distribution of CC(a*) and CC(b*) for our database, where 
CC(a*) and CC(b*) are both comprehensively distributed from 0 
to 0.8. Note that CC(a*) and CC(b*) of an image always have 
close values because the complexities of a* and b* channels of 
natural images are statistically consistent. 

 
Fig. 3. Principle of the PD method: (a) the original (A, B and 
C) and new (A’, B’, and C’) primary colors [4]; (b) the original 
and new fields of an image, and simulated images with 
different CBU performances. 
    After collecting the 25 reference images with a great variety of 
structural and chromatic complexities, this work generated 
several different CBU visibilities for each reference image to 
create diverse CBU performances. To this end, we adopt the 
primary desaturation (PD) method [4], which uses three new 
desaturated “primary” colors that can just cover the color gamut 
of an image to replace the original primary colors (R, G, and B). 
More implementation details of the PD method can be found in 
Fig. 3 and [4]. Obviously, the PD method can effectively suppress 
CBU for an image with a smaller color gamut by desaturating the 
fields. Therefore, we reduce saturation S of all the pixels of each 
reference image to 33% and 67%, respectively, and for either 
desaturated reference image, use the PD method to derive three 

fields. Less visible CBUs are expected for the two desaturated 
images processed by the PD method, as the desaturation directly 
produces a smaller color gamut. In addition, we also use the 
conventional RGB scheme to derive three fields for each original 
and desaturated images. In this way, five test cases with different 
levels of CBU are generated for each reference image. For 
convenience, the five cases are denoted as PDS=33%, PDS=67%, 
RGBS=33%, RGBS=67%, and RGBS=100%, respectively. 

2.2 Simulation of Retinal Images 

 
Fig. 4. (a) Rotating camera system. Retinal image with 
CBU (b) simulated by shifting the fields; (c) captured by 
the rotating camera system. 

    As mentioned before, the objective CBU assessment in this 
paper is based on image processing of the retinal images; hence, 
the retinal image with CBU needs to be simulated to know how 
the CBU phenomenon is perceived. Since CBU in the following 
experiments will be caused by horizontal saccade (very fast eye 
movement), the three fields of each test case are horizontally 
shifted and overlapped to simulate the retinal image, where the 
shift distance is calculated from the viewing distance and saccade 
speed. Fig. 4(b) shows the simulated retinal image with CBU for 
RGBS=100%, corresponding to a viewing distance of 1 m and 
saccade speed of 100 degree/s. We also actually show the three 
fields sequentially on a 240-Hz LCD (details will be introduced 
in the following part) and use a Nikon D750 camera with a 35mm-
lens, assembled on a rotating motor, to capture the accumulated 
image in a frame time (1/60s). By placing the camera 1 m away 
from the display and setting the motor’s rotation speed to 
100degree/s, Fig. 4(a) shows the rotating camera system, and Fig. 
4(c) shows the captured image, which is almost the same as the 
simulated one in Fig. 4(b). By considering that the rotating 
camera can well imitate eye saccade, our method is accurate 
enough to simulate retinal images with CBU. 

2.3 Visual-Saliency-Based CBU Assessment 
    After simulating the retinal images, this paper extracts the CBU 
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visibility from the information lying in the images. In fact, this is 
a generalized full-reference image quality assessment (FR-IQA) 
problem that evaluates the quality of a distorted image when its 
ideal reference image is simultaneously given. The general 
concept of FR-IQA is unevenly regarding the contents of an 
image and up-weighting the contents that highly influence an 
observer’s subjectivity while comparing the distorted with 
reference images. Recent years, the visual saliency theory makes 
a great success in FR-IQA [9, 11] using the information of 
intensity, color, orientation, among others to determine the extent 
that the contents in an image grab a subject’s attention. For 
example, the famous visual saliency-based index (VSI) has been 
recently proposed for general FR-IQA [9]. Inspired by this, using 
the effective graph-based visual saliency (GBVS) method [11], 
we first compute the visual saliency (VS) map of a retinal image 
with CBU and use this map to unevenly weight the color 
difference between the retinal images with and without CBU. 
Note that the VS map may be changed after adding CBU into the 
original image; i.e., the CBU “fringes” with high colorfulness 
may grab additional attention. Therefore, it is the image with 
CBU but not the one without CBU that is adopted to compute the 
VS map. Next, considering the effect of attention competition in 
color vision while watching complicated natural images [12], we 
propose another assumption that the overall CBU visibility is 
further determined by the dominant visual saliency regions (DVS 
regions), which are regions with VS higher than a certain 
threshold. In this way, the calculation flow of the proposed CBU 
index is plotted in Fig. 5. Note that the DVS regions contain the 
most severe CBU fringes, as shown by the rightmost image in Fig. 
5, meaning that the proposed DVS method can effectively extract 
the CBU information in an image. Moreover, the color difference 
is in terms of Euclidean distance in the perceptually uniform CIE 
L*a*b* color coordinate system, i.e., the vector distance between 
two chromas, denoted as ΔCa*b*. This is simply because ΔCa*b* is 
linearly associated with the perception of colorfulness, which is 
also the way the color difference was evaluated in the previous 
studies that achieved satisfactory results [5, 6]. 

 
Fig. 5. Calculation flow of the proposed CBU index based 
on dominant visual saliency regions (DVS regions), where 
Φ is the area of all the DVS regions. 

3 Experiments and Results 
3.1 Conduction of Perceptual Experiments 
    A 24-inch LCD (BENQ XL2540) with a frame rate of 240 Hz 
is used in the perceptual experiments. For each test case, its three 
fields, followed by a black (K) field, are sequentially displayed at 
240 Hz, so that an FSC LCD with a field rate of 240Hz and a 
frame rate is 60Hz is conducted. The viewing distance is 1 m to 
produce a common horizontal field of view (FOV) of 30 degrees 
for a 24-inch display. Two LEDs are located at left and right sides 
of the screen and lit alternately, to induce the subjects’ saccade 
within an FOV of around 30 degrees, as shown in Fig. 6(a). The 
saccade speed in the experiments is fixed at 100 degrees/s, 
leading to an alternating frequency of 1.6 Hz for the LEDs. The 
experiments are conducted in a dark room. 18 subjects with 
normal color vision (aged from 21 to 32, 8 males and 10 females) 
are invited to participate in the experiment. In the experiment, the 
125 test cases with a variety of CBU visibilities are randomly 
provided, and each subject is asked to subjectively rate the CBU 
visibility using a 1-through-10 score table, as shown in Fig. 6(b). 
To ensure all the subjects can evaluate the CBU visibility 
correctly, a pre-training preceding the formal experiments is set 
for each subject, in which two vertical white bars are provided. 
One is rendered by sequential RGBK fields, acknowledged by the 
researchers to have the most severe CBU [5]; the other is rendered 
by successive white fields, obviously producing no CBU. In this 
way, each subject can understand the greatest and slightest CBU 
visibilities and is told to map them to score 10 and 1, respectively. 
Moreover, the subjects are requested to make their scores linearly 
correlated to their subjectivities. 

Fig. 6. (a) Architecture of the perceptual experiments. (b) 
Subjective score for perceptual visibility. 

3.2 Results 
    Firstly, we directly equally weight the contents in an image 
without using its VS map; that is, the mean ΔCa*b* between retinal 
images with and without CBU. The result is shown in Fig. 7(a), 
where the PLCC between the objective scores and the mean 
opinion scores (MOSs) is quite low, as 0.45. Subsequently, the 
objective CBU visibilities are calculated using the method in Fig. 
5 without setting the VS threshold (VS threshold T=0). As a 
result, the PLCC is still low, as 0.44, as shown in Fig. 7(b). 
Therefore, based on our assumption that the CBU visibility is 
mainly determined by DVS regions in an image, objective scores 
are further re-calculated by raising the VS threshold (VS 
threshold T=50%) in Fig. 5. Fig. 7(c) shows the objective results 
versus the subjective ones, where the PLCC is as high as 0.82, 
which reaches the level of mainstream FR-IQA algorithms [9], 
revealing that the proposed CBU index is an effective predictor 
for image-content-adaptive scenarios. If one uses this index to 
predict the subjective CBU visibility for an image with a known 
FSC driving scheme, Fig. 7(c) also gives the confidence and 
prediction intervals via linear regression on the data. In addition, 
by comparing the results in Figs. 7(a), (b) and (c), our assumption  
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Fig.7. Objective CBU visibilities versus subjective ones: (a) equally-weighting the contents in an image; (b) only using the original 
VS map; (c) using the proposed method based on dominant visual saliency (DVS). Both axes are normalized and each error bar 
shows mean, upper, and lower quartiles of the experimental data from the 18 subjects. The dark and light red bands denote 
confidence and prediction intervals with a confidence level of 90%. 

that the CBU visibility is mainly determined by DVS regions is 
clearly verified. 

4 Conclusion and Discussion 
    To develop an image-content-adaptive CBU index, this paper 
first established an image database containing 25 reference 
images and 125 test cases covering a variety of image types and 
CBU levels. Based on the database, 18 subjects subjectively rated 
the CBU visibilities. Simultaneously, the objective results were 
calculated by the proposed CBU index based on DVS regions, 
which processed the simulated retinal images. The results showed 
that the objective and subjective CBU visibilities have a high 
PLCC of 0.82. Also, the objective CBU visibilities calculated 
without considering DVS regions or visual saliency have poor 
PLCCs of 0.45 and 0.44, respectively, demonstrating the 
effectiveness of DVS regions. By fitting the subjective perceptual 
CBU visibilities with the objective method based on dominant 
visual saliency, the performance of the proposed CBU index 
(PLCC=0.82) can be well compared with mainstream FR-IQA 
algorithms for general images, revealing it is an effective 
predictor for evaluating FSC displays, such as LCD TVs, VR and 
AR devices. More important, a completely image-content-
adaptive CBU index which overcomes the dilemma of no 
application criterion for FSC displays was proposed, to our 
knowledge, for the first time. 
    In the future, we will extend our study by establishing a larger-
scale image database for researchers working on FSC displays. 
Additionally, the computational model that how the human visual 
system perceives CBU will be refined to obtain a higher 
correlation between the subjective and objective results. 
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